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Normally, such reductions give 0x0 bridged MO(V) and structures of the complexes are explored and the 
dimers; the presence of bulky groups on the ligands, implications for the molybdenum hydroxylases 
however. inhibits the dimerization. are discussed. 

Representative ligands: 

L: 

RNHCH&(R’)$H 
R = Me, Et, Ph, Bz 
R’ = Me, Et 

R2NCHZCHZNHCH2C(R’)$SH 
R=Me;R’=Me,Et 

, RSH 

SH 

R = i-pr, t-but 

L”’ : 

R R 
\ 
NCH,CH,N; 

+Z FHz 

YHR’ FHR’ 

SH SH 

R = Me, Et 
R’=Me 

CH2NHCH2CH2NH CH2 

R=i-pr, t-but 

Synthetic methods for the preparation of the com- 
plexes and their properties (IR, electronic and EPR 
spectra; electrochemistry) are reported. The relation- 
ships between EPR and electrochemical parameters 
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Current problems in modeling the molybdenum 
centers of the hydroxylases and possible directions 
for research toward the solution of these problems 
are presented. 
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Hydrogenases have been purified from different 
biological sources. They are highly diversified 
enzymes in terms of active centers constitution, 
although they catalyze the simplest oxidation- 
reduction process: H2 + 2H’ + 2e. 

Hydrogenases have been recognized so far to be 
iron-sulfur proteins. Generally they contain from 
four to twelve atoms of non-haem iron arranged in 
Fe-S clusters representative of the known basic 
structures, e.g., [2Fe-2S], 3Fe-xS] , and [4Fe4S] 
[l-7]. 

Recently, nickel joined the group of transition 
metals relevant in biological oxidation-reduction 
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positive than that of the substrate couple HZ/H’. The 
value determined was shown to be pH dependent 

PI. 

I 2.23 I 

Fig. 1. EPR spectra of D. gigas hydrogenase enriched (B) and 
unenriched (A) ‘rNi enzyme. The EPR experiments were 
performed with a Bruker 200-series EPR-spectrometer. EPR 
data was taken at -100 K, using 100 KHz modulation 

frequency and 9.256 GHz microwave frequency. Adapted 
from ref. 9. 

processes. It was shown to be a structural compo- 
nent of the hydrogenases isolated from Desulfovibrio 
gigas [ 1, 21, Desulfovibrio desulfuricans (ATCC 
27774) [3], Desulfovibrio desulfuricans (Norway 
strain) [4] , Methanosarcina barkeri [ 51, Methano- 
bacterium thermoautotrophicum [6] and Chroma- 
tium vinosum [8] . With the exception of the last 
one, they were demonstrated to contain EPR nickel 
redox dependent signals. As an example, D. gigas 
hydrogenase exhibits rhombic EPR signals, with g- 
values 2.3 1, 2.23 and 2.02 (see Fig. 1). Using iso- 
topic reconstitution by 61Ni (nuclear magnetic 
moment I = 3/2), the EPR signal was proven to arise 
from a nickel species [93. The same types of experi- 
ments were reported for M. thermoautotrophicum 
[6] and D. desulfuricans (ATCC 27774) hydro- 
genases [3]. 

A detailed EPR study on the oxidation-reduction 
transition of the EPR detectable species in the pre- 
sence of reductants (dithionite and hydrogen) indi- 
cates [ 1,2] : 

(a) The reduction of the Ni EPR active species is 
an one-electron process (possibly associated with 
the redox couple Ni(III)-Ni(I1)). 

(b) No evidence was found so far for exchangeable 
protons in the vicinity of the nickel center in the 
oxidized (native) state. However, hydrogen reduced 
samples originate a different EPR rhombic Ni signal, 
which may represent an active transient species 
occuring during the activation of hydrogen mole- 
cules [9]. Thus, it is attractive to propose the pre- 
sence of a hydride intermediate in analogy with 
nickel catalysts involved in hydrogenation pro- 
cesses [lo]. 

(c) Although the determined mid-point redox 
potential (-220 mV) is more negative than that 
expected for nickel compounds [ 1 l] it is still more 
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The cycle of oxygen in the biosphere is totally 
dominated by two processes, photosynthetic oxida- 
tion of water to dioxygen on the one hand and 
reduction of dioxygen to water on the other. There 
is one problem common to the mechanism of these 
two reactions; at least at some point, electrons are 
carried one at a time, whereas the dioxygen-water 
reaction requires a total of four electrons. In some 
cases thermodynamic requirements effectively 
prevent four consecutive one-electron transfers, which, 


